
OP2 Developers Guide - Distributed Memory (MPI) Parallelisation

Mike Giles, Gihan R. Mudalige and Istvan Reguly

December 2013

Abstract

This document explains OP2’s distributed memory parallelisation design and implementation
based on MPI. It is intended primarily for those who are developing OP2 for distributed memory
multi-core CPU and/or GPU clusters and should be read in conjunction with the OP2 developer
manual for single node systems. Those who are only using OP2 should instead read the Users
Manual.

1

Contents

1 Introduction 3

2 MPI parallelisation strategy 3
2.1 Parallel Startup . 3
2.2 Constructing Halo Lists . 5
2.3 Halo Exchanges . 9
2.4 Partial Halo Exchange . 10
2.5 Global Operations . 12
2.6 Fetching Data . 12
2.7 Performance Measurements . 12
2.8 Garbage Collection . 13

3 HDF5 File I/O 13

4 Partitioning 14
4.1 Mesh Renumbering . 15

5 Heterogeneous Back-ends 16
5.1 Hybrid CPU/GPU Execution . 17

6 To do list 18

2

1 Introduction

The OP2 design uses hierarchical parallelism with two principal levels. At the highest level, OP2
is parallelised across distributed-memory clusters using MPI message-passing. This uses essentially
the same implementation approach as the original OPlus[5]. The domain is partitioned among the
compute nodes of the cluster, and import/export halos are constructed for message-passing. Data
conflicts when incrementing indirectly referenced datasets are avoided by using an “owner-compute”
model, in which each process performs the computations which are required to update data owned
by that partition. The second level of parallelisation is achieved within a single multi-core CPU
or GPU node. The multi-CPU parallelisation is currently supported by OpenMP threads and in
the future will support other implementations such as Intel’s AVX. The GPU support is based on
NIVIDIA CUDA and will later support OpenCL. The single node design and implementation is
the subject of the OP2 developer manual. In this document we detail the design of the distributed
memory level based on MPI and describe some of its key implementation aspects. We also detail the
heterogeneous cluster back-end design which facilitates the development and execution of an OP2
application on a cluster of GPUs and a cluster of multi-threaded CPUs. The Airfoil application
supplied with the OP2 release is used as an example to illustrate the design and implementation.

2 MPI parallelisation strategy

2.1 Parallel Startup

An OP2 application executed under MPI on a cluster of nodes, where a node may consist of a single
CPU core, a multi-core CPU (or an SMP node) or a GPU node, will have multiple copies of the
same application program executed as separate MPI processes. The starting point of a distributed
memory parallel application is the design of how the sets, mappings and data on sets that defines
an unstructured mesh application is read in by OP2. The current implementation achieve this
input (and output) via two approaches:

1. Allow the application developer to handle the file I/O where a minor extension to the OP2
API will makes it possible to define op sets, op dats and op maps that are distributed across
the MPI universe.

2. Provide HDF5 based parallel I/O routines with which OP2 routines can read in the sets, data
on sets and mappings from a file in a prescribed format.

The rationale for the above is to allow developers to make the trade-off between ease-of-use and
flexibility. Some will want maximum ease-of-use and are prepared to pay the price of working with
HDF5 files with the flat keyword-based hierarchy. Others will want the flexibility to manage their
data storage in the way they wish, and will accept the additional programming effort this will
entail.

In the first case, we assume that the user I/O has resulted in loading the data on sets and
mappings between sets across the distributed memory MPI universe. The number of set elements
(and thus data on sets) or the size of the mapping tables held by an MPI process is decided by
the application programmer. OP2 assumes that only one partition is held by a single MPI process.
For example given P number of processors, g nnodes number of nodes and g nedges an application
programmer can decide to distribute the nodes and edges so that each process holds g nnodes/P
nodes and g nedges/P . Similarly the edge to node mapping table could be distributed such that
process 0 will provide the first g nedges/P entries, process 1 the second g nedges/P entries and

3

so on. When distributing mapping table entries we assume that the MPI process that holds some
set element X will also hold the mapping table entries (belonging to all the mapping tables) from
X. This is effectively a trivial contiguous block partitioning of the data on sets and mappings, but
it is important to note that this distribution (or partitioning) will not be used for the parallel
computation. OP2 will repartition the data on sets and related mapping tables, migrate all data
on sets and mappings to the correct MPI process and renumber the mapping tables as needed. The
current MPI implementation provides partitioning routines (as described in Section 4) to support
this task.
After the loading in of data and mapping tables is complete OP2 set, map and dat declarations
can be invoked on each process. This extends the existing API as follows:

• op decl set: size is the number of elements of the set which will be provided by this MPI
process

• op decl map: imap provides the part of the mapping table which corresponds to its share
of the from set

• op decl dat: dat provides the data which corresponds to its share of set

An example implementation of the above is given in the Airfoil application (airfoil plain) where
an initial distribution of data on sets and mapping tables are achieved. MPI rank 0 will serially
read into its RAM the data on sets and mapping tables from the mesh file (new grid.dat) and then
will distribute the part of data and mappings (using MPI Scatter operations) to other processors.

In the second case, OP2 defines an HDF5 file format (described later in Section 3) using which an
applications programmer can create a file containing data and mappings to be used in the OP2
application. The OP2 API define the following to support reading from such a file:

• op decl set hdf5: similar to op decl set but with size replaced by file which defines the
HDF5 file from which size is read using keyword name

• op decl map hdf5: similar to op decl map but with imap replaced by file from which
the mapping table is read using keyword name

• op decl dat hdf5: similar to op decl dat but with dat replaced by file from which the
data is read using keyword name

An example use of HDF5 file I/O is also given in the Airfoil application (airfoil hdf5).

If the user is responsible for allocating data arrays to pass to op decl map and op decl dat then
the MPI back-end will make a copy of this data internally as halo creation needs to realloc memory
(which might invalidate original pointers held at the user application level). At the end of the
program the user is responsible for freeing the allocated memory at the application level, and OP2
will free its internal copy of this data when op exit() is called.

However, if OP2’s hdf5 capabilities are used for File I/O then OP2 will be responsible for clean-up
of data arrays at the end of the program.

4

2.2 Constructing Halo Lists

The OP2 distributed memory parallelisation uses an “owner-compute” model where each MPI
process “owns” the elements of the partitioned sets. In order to ensure that the data associated with
these sets are “up-to-date” it is necessary to communicate with “neighbours” of an MPI process,
and perform redundant computation on some of the elements imported from these neighbours. The
block of data that’s exchanged is commonly known as a halo in distributed memory programming.

Consider an example mesh consisting of nodes and cells, with a cell to node mapping. If a cell is
located on a MPI process, then all the nodes making up the cell must also be present in this (local)
process in order to ensure that when a loop over cells are performed, the owned cell receives all
the possible contributions from its nodes. If at least one of the nodes are not present in this local
process, then it should be imported in from a foreign MPI process. Conversely, if a node located
on an MPI process is part of a cell that resides in a foreign MPI process, then that cell needs to be
imported in to this local process because it may need to be executed for the local node to receive
all the required contributions.

1

(6.8)

8

(1.8)

9

(3.9)

10

(2.5)

11

(6.6)

12

(1.3)

13

(2.8)

14

(3.9)

15

(8.8)

3

(0.118)

2

(7.8)

3

(5.4)

4

(2.6)

5

(3.6)

6

(7.5)

7

(6.2)

0

(0.128)

1

(0.345)

2

(0.224)

4

(0.246)

5

(0.324)

6

(0.112)

7

(0.928)

8

(0.237)

rank X
rank Y

0
(5.3)

Figure 1: Example mesh with cells and nodes

In the example mesh illustrated in Figure 1 there are 16 nodes and 9 cells partitioned across two
MPI processes (rank X and rank Y). Assume that the only mapping available is a cells to node
mapping. Rank X holds nodes 0, 1, 2, 3, 4, 5, 6 and 7 and cells 0, 1, 2, 4, and 5. Rank Y holds
nodes 8, 9, 10, 11, 12, 13, 14, and 15 and cells 3, 6, 7 and 8. A loop over the cells will need data
on nodes 9, 10 and 11 to be imported in to rank X from rank Y. Additionally data on nodes 4
and 5 needs to be imported in to rank Y from rank X. On the other hand, a loop over nodes with
contributions from surrounding cells will cause cells 4 and 5 to be imported into rank Y and “kept
up to date” in order to receive their contributions to nodes 9, 10 and 11. Given the above scenario,
each MPI process needs to construct a list of elements for each set that needs to be imported from
and exported to other “neighbouring” MPI processes. Within an OP2 application, creation of these
halos occur immediately after partitioning (see Section 4) with a call to op halo create(). The
remainder of this section illustrates the design and implementation of this routine and the data
structures used.

5

Table 1: Import/Export lists
On X core ieh eeh inh enh
Nodes 0, 1, 2, 3, 4, 5, 6, 7 - - 8, 9, 10, 11 4, 5, 6, 7
Cells 0, 1, 2 3 4, 5

On Y core ieh eeh inh enh
Nodes 8, 9, 10, 11, 12, 13, 14, 15 - - 4, 5, 6, 7 8, 9, 10, 11
Cells 6, 7, 8 4, 5 3 - -

In order to determine what elements of a set should be imported or exported (via MPI Send/Receives)
to or from another MPI process, we create the following classification:

• core : An element of a set is said to be a core element to the MPI process it is located at, if
all the elements referenced through all the mapping tables from this set element is also in the
core element set in this MPI process. e.g. In a mesh with nodes and cells (with a mapping of
cells to nodes) a cell held within an MPI process is core to this MPI process if all the nodes
referenced by this cell is also core to this MPI process.

• export execute halo (eeh): An element of a set is said to belong to the “export execute
halo” if at least one element referenced through any of the mapping tables from this set
element is NOT core to this (local) MPI process. e.g. In a mesh with nodes and cells (with a
mapping of cells to nodes), if a cell references a node owned by a foreign MPI process then this
cell needs to be exported to the foreign MPI process, because it may need to be executed on
that foreign process to update data on that node. This cell will fall in to the export execute
halo (eeh) on the local MPI process and in turn will form part of the import execute halo
(ieh) on the foreign MPI process.

• import execute halo (ieh): If an element of a set is referenced by an element located at a
foreign MPI process then the foreign element needs to be imported on to this MPI process in
order to compute the correct contributions to the local element. The imported element is said
to be in the import execute halo (ieh) of the local MPI process. e.g. In a mesh with nodes
and cells (with a mapping of cells to nodes), if a node on the local MPI process is referenced
by a cell in a foreign MPI process, then the foreign cell needs to be imported and will be part
of the import execute halo (ieh) on the local MPI process.

• import non-execute halo (inh): If an element located at an MPI process references (via
some mapping, including mappings belonging to the ieh) an element that is located on a
foreign MPI process, then the element on the foreign MPI process needs to be imported. The
imported element will fall in to the import non-execute Halo (inh) if it is not already a part
of the import execute halo (ieh). e.g. In a mesh with nodes and cells (with a mapping of cells
to nodes), if a cell references a node owned by a foreign MPI process then the referenced node
needs to be imported onto this MPI process. The node will fall into the export non-execute
halo enh on the foreign MPI process.

• export non-execute halo (enh): If an element of a set is referenced by an element located
on a foreign MPI process then the data for the local element needs to be exported on the
foreign MPI process (if its not already in the eeh). Any loop over the foreign set element
cannot proceed without getting all the contributions from the elements it refers to. The
exported element is said to be part of the export non-execute halo (enh) on the local MPI
process. enh is a subset of core. e.g. In a mesh with nodes and cells (with a mapping of cells

6

to nodes) if a node located on the local MPI process is referenced by a cell in a foreign MPI
process, then the local node needs to be exported to that foreign process.

The above classification allows us to clearly determine which elements of a set can be computed
over without MPI communications, facilitating overlapping of computation with communications
for higher performance (see Section 2.3). For the mesh given in Figure 1, the import/export ele-
ments can be separated as in Table 1.

The op halo create() routine (defined in op mpi core.c) goes through all the mapping tables and
creates lists that hold the indices of the set elements that fall in to each of the above categories.
An export or an import list for an op set has the structure in Figure 2 (defined in op mpi core.h

and op mpi core.c):

1 typedef struct {

2 op_set set; //set related to this list

3 int size; //number of elements in this list

4 int *ranks; //MPI ranks to be exported to or imported from

5 int ranks_size; //number of MPI neighbors to be exported to or imported from

6 int *disps; //displacements for the starting point of each rank’s

7 //element list

8 int *sizes; //number of elements exported to or imported from each ranks

9 int *list; //the list of all elements

10 } halo_list_core;

11

12 typedef halo_list_core * halo_list;

13

14 halo_list *OP_export_exec_list;//eeh list

15 halo_list *OP_import_exec_list;//ieh list

16

17 halo_list *OP_import_nonexec_list;//inh list

18 halo_list *OP_export_nonexec_list;//enh list

Figure 2: halo list core struct

The above four arrays are indexed using set->index and is of size OP set index. Import and
export list creation in op halo create() is accomplished in the following steps, by each MPI
process:

1. Create export lists for execute set elements
Each MPI process goes through each element of each set. If a set element references (via any
of the mapping table from this set) any element that is not core to the local MPI process
then we add the referencing element to the eeh list. When creating the eeh list on a given
(local) MPI process, we also keep track of the foreign MPI processes that it will be exported
to. The list of elements to be sent to each foreign MPI process will be sorted according to its
local index.

2. Create import lists for execute set elements and related mapping table entries
Each MPI process exchanges the eeh list with the relevant neighbour processes and use the
imported lists to construct the ieh.

3. Exchange mapping table entries using the import/export lists
The eeh and ieh on each MPI process can now be used to exchange the bits of the mapping

7

1 typedef struct {

2 int dat_index; //index of the op_dat to which

3 //this buffer belongs

4 char *buf_exec; //buffer holding exec halo

5 //to be exported;

6 char *buf_nonexec; //buffer holding nonexec halo

7 //to be exported;

8 MPI_Request *s_req; //array of MPI_Reqests for sends

9 MPI_Request *r_req; //array of MPI_Reqests for receives

10 int s_num_req; //number of sends in flight

11 //at a given time for this op_dat

12 int r_num_req; //number of receives awaiting

13 //at a given time for this op_dat

14 } op_mpi_buffer_core;

15

16 typedef op_mpi_buffer_core *op_mpi_buffer;

17 op_mpi_buffer *OP_mpi_buffer_list;

Figure 3: op mpi buffer struct

tables that are related to the execute halo. The eeh and ieh of the “from set” of each mapping
table is used to identify which mapping table entries are to be exported and imported. For
each mapping table, the imported mapping table entries will be appended to the end of the
op map->map array.

4. Create import lists for non-execute set elements
Each MPI process goes through each element of each set, (now using all the mapping table
entries including the additional mapping table entries that were imported), and adds any
other element referenced (but not in ieh) to a inh list for each set. The list of elements to
be imported from each foreign MPI process will be sorted according to its local index on the
foreign process.

5. Create non-execute set export lists
Each MPI process exchanges the inh list with the relevant neighbour processes and uses the
imported lists to construct the enh. After this step, halo lists are complete. Each MPI process
has eeh, enh, ieh and inh lists.

6. Exchange data defined on execute set elements using the set import or export
lists
The data defined on the elements belonging to each halo list is exchanged. The execute halos
are exchanged first. For each op dat the imported data will be appended to the end of the
op dat->data array.

7. Exchange data defined on non-execute set elements using the set import/export
lists
The non-execute halos are exchanged second. For each op dat the imported data will be
appended to the end of the op dat->data array after the ieh data.

8. Renumber Mapping tables
Each MPI process goes through all mapping table entries and renumbers the referenced set

8

core eeh ieh inh

op_set->core_size 0 op_set->size op_set->size +

OP_import_exec[..]->size

Figure 4: Element order of an op set after halo creation

element indices to point to local indices. All required referenced elements (or a copy of it)
should be now available locally on each MPI process.

9. Create MPI send buffers
For each op dat, create buffer space for MPI Isends. The struct detailed in Figure 3 holds
the required buffers and related data.

10. Separate core elements
To facilitate overlapping of computation with communication, for each set, the core elements
are separated to form a contiguous block of elements. Any element NOT belonging to the eeh
is a core element. We rearrange the local set elements and initialise set->core size to the
number of core elements. Thus during a loop over a given set, on each MPI process, element
indices 0 to set->core size - 1 can be computed over without halo data and elements
from set->core size to set->size + OP import exec[set->index]->size will need to be
computed over after all the calls to wait all() are completed.

11. Save the original set element indices
As the set elements are now rearranged, we need to keep track of the original order in which
they appeared so that calls to op fetch data() as well as final outputs can be accurately
handled. The part struct (see op mpi core.h) is used to hold the original global indices of
each set element.

12. Clean up and compute rough estimate of average worst-case halo size
Temporary arrays are freed and a rough estimate of the average size of the worst case import
halos on each MPI process is computed. This takes in to account both the ieh and inh and
accounts for the data sizes held per set element. The calculation does NOT take in to account
which halos are exchanged during the op par loops later in the application.

Figure 4 illustrates the element order in which data on a set will be organized after halo creation.

2.3 Halo Exchanges

A call to op par loop in a OP2 application executed under MPI will result in the loop being
executed over the local elements of the set on each MPI process. Additionally if the loop is an
indirect loop, then computation should be done over the ieh as well. Depending on the loop (indirect
or direct) and the access type of each op arg, halo exchanges may be needed before computation
is performed over any elements that are not core and in the ieh. After loop computation is
performed, depending on the access and argtype of the op arg the halos must be marked as “dirty”
so that the next iteration of the loop can make the decision to update the halos as required (defined
in op mpi core.c and op mpi rt support.c). The current implementation utilise a separate field
in the op dat struct to holds this information. The value op dat->dirtybit is set to 1 to indicate
that the halo of op dat has been modified. The rules governing the loop operation are as follows:

9

1 for each indirect op_arg {

2 if ((op_arg.access is OP_READ or OP_RW) and (dirty bit is set))

3 then do halo exchange for op_arg.dat and clear dirty bit

4 }

5 if(all indirect op_arg.access == OP_READ)

6 execute/loop over set size

7 else

8 execute/loop over set size + ieh

Figure 5: Algorithm to determine a halo exchange

1. If the op par loop consists of at least one op arg that is indirectly accessed then the whole
loop is classified as an indirect loop. Else it is a direct loop.

2. Direct loops will only need to loop over the local set size using local data and no halo exchanges
are needed.

3. For indirect loops the algorithm detailed in Figure 5 determines a halo exchange.

4. After the loop computation block we set the dirty bit for each op arg.dat with op arg.access

equal to OP INC, OP WRITE or OP RW.

A halo exchange is triggered by a call to op exchange halo(op arg* arg) which is defined in
op mpi rt support.c. Within this call, the above conditions that determines a halo exchange are
checked and if satisfied will pack the relevant halo data to the pre defined send buffers, make a call
to MPI non-blocking operations (MPI Isend and MPI Irecev) and will return 1 to indicate that a
non-blocking communication is in-flight. As detailed in Section 2.2, the eeh and the enh of an MPI
process provides the indices of the elements that needs to be exported as well as the MPI ranks
that will be exported to. Using these lists an MPI process will pack the data to be set into the
send buffers and then will send them using MPI Isend operations. The code detailed in Figure 6 is
for sending the eeh.

The MPI Isend operations are immediately followed by MPI Irecev operations (Figure 7), which
sets up the non-blocking communications to directly copy the incoming data in to the relevant
op dat, using the ieh and inh lists.

A call to op wait all(op arg arg) routine needs to be performed in order to complete the MPI
communications. The op par loop is structured so that all the op exchange halo() calls are
done at the beginning of the loop, followed by computation over the core elements of the set
and then by calls to op wait all(). This will allow for maximum overlapping of computation
with communication as none of the core elements reference any halo data. After the calls to the
op wait all() the remaining set elements could be computed. A reference implementation of the
above can be found in op seq.h.

2.4 Partial Halo Exchange

The halo exchange for a given op set will trigger a exchange of all the halo elements for this set.
The reason is due to OP2 creating the halo for an op set based on all the mapping tables from and
to that set (as detailed previously). Therefore when a parallel loop is executed over a boundary set

10

1 halo_list exp_exec_list = OP_export_exec_list[dat->set->index];

2

3 for(int i=0; i<exp_exec_list->ranks_size; i++) {

4 for(int j = 0; j < exp_exec_list->sizes[i]; j++)

5 {

6 set_elem_index = exp_exec_list->list[exp_exec_list->disps[i]+j];

7 memcpy(&((op_mpi_buffer)(dat->mpi_buffer))->

8 buf_exec[exp_exec_list->disps[i]*dat->size+j*dat->size],

9 (void *)&dat->data[dat->size*(set_elem_index)],dat->size);

10 }

11 MPI_Isend(&((op_mpi_buffer)(dat->mpi_buffer))->

12 buf_exec[exp_exec_list->disps[i]*dat->size],

13 dat->size*exp_exec_list->sizes[i],

14 MPI_CHAR, exp_exec_list->ranks[i],

15 dat->index, OP_MPI_WORLD,

16 &((op_mpi_buffer)(dat->mpi_buffer))->

17 s_req[((op_mpi_buffer)(dat->mpi_buffer))->s_num_req++]);

18 }

Figure 6: MPI send halo

1 halo_list imp_exec_list = OP_import_exec_list[dat->set->index];

2

3 int init = dat->set->size*dat->size;

4 for(int i=0; i < imp_exec_list->ranks_size; i++) {

5 MPI_Irecv(&(dat->data[init+imp_exec_list->disps[i]*dat->size]),

6 dat->size*imp_exec_list->sizes[i],

7 MPI_CHAR, imp_exec_list->ranks[i],

8 dat->index, OP_MPI_WORLD,

9 &((op_mpi_buffer)(dat->mpi_buffer))->

10 r_req[((op_mpi_buffer)(dat->mpi_buffer))->r_num_req++]);

11 }

Figure 7: MPI receive halo

that has a very sparse connectivity to an internal set, the full internal set’s halo will be exchanged.
In some 3D mesh applications the connectivity from boundary set to internal set is significantly
smaller, pointing to a case where a partial halo exchange would be advantageous to gain better
performance. With a partial halo exchange you only need to hide message latency rather than
latency plus time to actually transfer the full halo of data.

As a result, a partial halo exchange mechanism has now been implemented, where based on the
mapping table that determines the connectivity between the sets, only the halo elements related
to this map is exchanged. The same halo structs are used as before, but now a per map halo
is created in op halo permap create(). This per map halo is exchanged if the total number of
(global) mapping table entries (for this map) that references foreign elements over a partition
boundary is less than 30% of the total size of the halo for the exchanged set.

Thus for example, assume that a map exists from boundary edges to internal nodes (bedges
to nodes) and a mapping exists between internal edges to internal nodes (edges to nodes). If

11

the number of halo elements due to bedges to nodes is less than 30% of the halo elements due to
both bedges to nodes and edges to nodes, then a partial halo will be exchanged only using the
per map halo of bedges to nodes, in a loop over bedges that indirectly accesses internal nodes.

2.5 Global Operations

If an op arg is of type OP ARG GBL then a global operation needs to be performed for that argument.
The operation to be performed is one of OP INC (global reduction), OP MAX (global maximum),
OP MIN (global minimum). For an op arg of type OP ARG GBL, the contributions from executing
the ieh must not be included. Thus the reference implementation passes in a dummy value in
place of any op arg with type OP ARG GBL. After the loop over the elements are performed on
each MPI process, the global operation should be done across all the MPI processes by a call to
op mpi reduce(). This routine checks for the type of the data exchanged and the type of the
operation to be performed and calls MPI Allreduce with the relevant operation and data type.

2.6 Fetching Data

The operation of op fetch data() within an OP2 application executing over MPI will be to
present the current values of the op dat’s data array in the order of the elements that was orig-
inally handed to OP2. It should be noted that the data array presented to the user level ap-
plication is a copy of the current state of the internal op dat. The implementation first makes
a copy of the current data values in the op dat requested and will reorder them according to
the original global index of the set elements on which this data is defined on. A similar op-
eration is carried out by op fetch data hdf5(op dat dat, T* data, int low, int high) and
op fetch data hdf5 file(op dat dat, char const *file name). See user documentation for
more details.

Conversely an op put data() routine may also be implemented later (as required) so that the user
level application can modify the internal values of an op dat. In this case the user submitted data
values will replace the internal op dat’s data values. A valid implementation will need to translate
the original set element index to the current set element index.

2.7 Performance Measurements

For measuring the execution time of code, two timer routines are implemented. Firstly, op timers

core() (in op lib core.c) measures the elapsed time on a single MPI process while op timers()

(in op mpi decl.c) has an implicit MPI Barrier() so that time across the whole MPI universe
can be measured. The time spent in the op par loop() calls is measured and accumulated. The
setup costs due to halo creation and partitioning are also measured and the maximum on all the
processors is printed to standard out by rank 0. Additionally information about the amount of
MPI communications performed is also collected. For each op par loop() we maintain a struct
that holds (1) the accumulated time spent in the loop (2) the number of times the op par loop()

routine is called, (3) the indices of the op dats that requires halo exchanges during the loop, (4)
the total number of times halo exchanges are done for each op dat and (5) the total number of
bytes exported for each op dat.

Currently, the only way to identify a loop is by its name. Thus we use a hash function to compute
a key corresponding to the op mpi kernel struct (Figure 8) for each loop and store it in a hash table.
Monitoring the halo exchanges require calls to the op mpi perf comm() (defined in op mpi core.c)
for each op arg that has had a halo exchanged during each call to an op par loop(). As this may

12

1 typedef struct

2 {

3 char const *name; // name of kernel

4 double time; //total time spent in this

5 //kernel (compute+comm-overlapping)

6 int count; //number of times this kernel is called

7 int* op_dat_indices; //array to hold op_dat index of

8 //each op_dat used in MPI halo

9 //exports for this kernel

10 int num_indices; //number of op_dat indices

11 int* tot_count; //total number of times this op_dat was

12 //halo exported within this kernel

13 int* tot_bytes; //total number of bytes halo exported

14 //for this op_dat in this kernel

15 } op_mpi_kernel;

Figure 8: MPI performance measurement collection struct

cause some performance degradation, we allow the MPI message monitoring to be enabled at
compile time using the -DCOMM PERF switch.

2.8 Garbage Collection

At the end of the OP2 application a call to op exit() will free all halo lists, MPI send buffers and
the table holding performance measures. Also any dats and maps held internally by OP2 is freed.

3 HDF5 File I/O

The current hdf5 file format follows the ASCI file format generated by the naca0012.m Airfoil
mesh generator. The generated hdf5 file structure and contents has can be viewed through the
h5dump utility. The hdf5 I/O routines that allows to read and write op sets, op maps, op dats and
constants are detailed in the user documentation.

13

4 Partitioning

Given the unstructured mesh in an OP2 application, distributing the data on sets and mapping ta-
bles across the MPI universe is achieved by a mesh partitioner in order to avoid building large halos.
OP2’s aim is to achieve good partitions without the intervention of the application programmer.
Once the OP2 declaration routines are executed, invoking op partition() from the application,
with the appropriate arguments (see user guide) will partition the sets and maps and migrate the
data to new MPI processes as required. There are a number of grid/mesh partitioners that can be
used for this task. The best partitioner for a given application can be selected as requred. The
current distributed memory implementation gives the option of using the following partitioning
routines:

• a geometric partitioning with ParMetis [1]

• k-way graph partitioning with ParMetis [1]

• k-way graph partitioning with PT-Scotch [2]

• Inertial coordinate bisection partitioning (for 3D meshes only) based on the original OPlus
partitioning in Hydra

• A user defined partitioning that can be read from an hdf5 file

OP2 also provides a number of supporting functions and data migration routines to facilitate
the above goals. OP2 should partition the mesh immediately after all the calls to op decl *.
For this OP2 assumes that an initial parallel distribution of the sets and mapping tables has
been performed during input, either by user defined I/O routines or using the HDF5 parallel I/O
routines. For example in the airfoil plain application the data and mappings are distributed
in a block partitioning fashion. The partitioning of the sets are performed by calls to wrapper
functions: op partition geom(), op partition kway() or op partition ptscotch() defined in
op mpi part core.c. A wrapper function is required to organize the data and/or mesh elements
into a format that is acceptable to the ParMetis and PT-Scotch partitioning routines. We anticipate
that supporting other partitioners may require new wrapper functions to be developed into the MPI
back-end.

For example in the airfoil application, the xy coordinates of the nodes are supplied in p x. Thus
op partition() can be utilized with p x. This will utilize ParMETIS’s geometric partitioning by
calling the wrapper function op partition geom(). After a call to op partition geom(), on each
MPI process, the ParMetis routine returns an array that gives the new MPI rank of each set element
(in this case for each node). At this point of the application we consider nodes as the partitioned
(or primary) set. The primary set and the available mapping tables will now allow to partition all
other sets. These secondary sets will inherit the primary set’s partitioning. Partitioning secondary
sets is achieved by a call to partition all() from within a wrapper function.

The logic of secondary sets inheriting the partitioning from the primary set is as follows. We
first compute a cost associated with using each mapping table to partition some secondary set
using a partitioned set starting from the primary set. Partitioning a set using a mapping from
a partitioned set costs more than partitioning a set using a mapping to a partitioned set. Each
secondary set is partitioned using the map identified as the one that gives the smallest cost. We
assign some integer value to indicate the cost.

For example if we have a cells to nodes mapping and the primary set is nodes (and has been
partitioned) using the map then we can determine where each cell should reside. Thus if a majority

14

of the nodes that is pointed to by a cell resides in some partition X (i.e. MPI rank X) then the cell is
also best placed on partition X (if not already on X). A similar reasoning is used when partitioning
the nodes, given the primary set is cells. In this case a temporary reverse map is created (i.e. a
nodes to cells mapping) to determine the partition of nodes. After all the set elements have been
assigned a partition a call to, migrate all() will migrates the data and mappings to the new MPI
process and will sort the elements on the new MPI ranks. Finally renumber maps() will renumber
mapping table entries with new indices.

At the end of an OP2 application, the data structures used for partitioning is freed as part of garbage
collection. For debugging purposes, we have also implemented a wrapper function: op partition

random() that performs a random partitioning of a given set. Currently partitioning and halo cre-
ation is achieved by a call to op partition() with the appropriate arguments (to select the specific
library and op set, op map and op dat) as detailed in the user guide. The parallel partitioning
only occurs when distributed memory parallelism (i.e. MPI back-end) is used. Otherwise, dummy
(null operations) routines are substituted in place of the actual partitioner calls.

4.1 Mesh Renumbering

OP2 allows the ordering or numbering of mesh elements in an unstructured mesh to be optimized.
The renumbering of the execution set and related sets that are accessed through indirections has
an important effect on performance [6]: cache locality can be improved by making sure that data
accessed by elements which are executed consecutively are close, so that data and cache lines are
reused. OP2, implements a renumbering routine that can be called to convert the input data meshes
based on the Gibbs-Poole-Stockmeyer algorithm in Scotch [2]. The renumbering is implemented in
../op2/c/src/externlib/op renumber.cpp.

However this renumbering is currently only works on a single node (i.e. no MPI support) and
the usual method of utilizing its benefits is to read in an unoptimized mesh in an OP2 HDF5 file, use
the mesh renumbering to optimize the numbering of this mesh and then write the resulting mesh
back to a new hdf5 file. The new hdf5 file can then be used on both single node and distributed
memory versions of the application.

15

1 for each op dat requiring a halo exchange {

2 execute CUDA kernel to gather export halo data

3 copy export halo data from GPU to host

4 start non-blocking MPI communication

5 }

6 for each color (i) {

7 if color ! = core colors {

8 wait for all MPI communications to complete

9 for each op dat requiring a halo exchange

10 copy import halo data from host to GPU

11 }

12 execute CUDA kernel for color (i) mini-partitions

13 }

Figure 9: MPI+CUDA halo exchange

5 Heterogeneous Back-ends

For Heterogeneous systems (such as distributed memory clusters of GPUs) at least two layers of
parallelization needs to be utilized simultaneously (1) distributed memory (process level parallelism)
and (2) single-node/shared-memory (thread level parallelism). As such the design for heterogeneous
platforms involve two primary considerations; (1) combining the owner compute strategy across
nodes and coloring strategy within a node and (2) implementing overlapping of computation with
communication within the “plan” construction phase of OP2. For distributed memory clusters of
GPUs, the OP2 design assumes that one MPI process will have access to only one GPU. Thus MPI
will be used across nodes (where each node is interconnected by a communication network such as
InfiniBand) and CUDA within each GPU node. For clusters with each node consisting of multiple
GPUs, OP2 assigns one MPI process per GPU. This simplifies the execution on heterogeneous
cluster systems by allowing separate processes (and not threads) to manage any multiple GPUs
on a single node. At runtime, on each node, each MPI process will select any available GPU
device. Code generation with such a strategy reuses the single node code generation with only a
few minor modifications as there is no extra level of thread management/partitioning within a node
for multiple GPUs. As the MPI back-end achieves overlapping of computation with communication
by separating the set-elements into two groups, the core elements can be computed over without
accessing any halo data. To achieve the same objective on a cluster of GPUs, for each op par loop

that does halo exchanges, OP2 assigns mini-partitions such that each will consists only either core
elements or non-core element (including execute halo, ieh elements). This will allow to assign
coloring to mini-partitions such that one set of colors are exclusively for mini-partitions containing
only core element’s while a different set will be assigned for the others. As such the pseudo-code
for executing an op par loop on a single GPU within a GPU cluster is detailed in Figure 9.

The core elements will be computed while non-blocking communications are in-flight. The col-
oring of mini-partitions is ordered such that the mini-partitions with the non-core elements will be
computed after all the core elements are computed. This allows for an MPI wait all to be placed
before non-core colors are reached. Each op plan consists of a mini-partitioning and coloring
strategy optimized for their respective loop and number of elements. In the above pseudo-code
the halos are transfered via MPI by first copying it to the host over the PCIe bus. As such its an
implementation that does not utilize NVIDIA’s new GPUDirect [3] technology for transferring data
directly between GPUs. However, OP2’s latest release has an implementation that utilize GPUDi-

16

rect (see user guide on how to enable this mode). With GPUDirect the host copy statements in
the above code is not required where simply calling the MPI send and receives will result in the
required communications between two GPUs.

The multi-threaded CPU cluster implementation is based on MPI and OpenMP and follows a sim-
ilar design to the GPU cluster design except that there is no data transfer to and from a discretely
attached accelerator; all the data resides in CPU main memory.

Currently, for simplicity the OP2 design does not utilize both the host (CPU) and the accelerator
(GPU) simultaneously for the problem solution. However, such a design is a possible avenue for
future work. One possibility is to assign an MPI process that performs computations on the host
CPU and another MPI process that “manages” the computations on the GPU attached to the host.
The managing MPI process will utilize MPI and CUDA in exactly the same way described above,
while the MPI process computing on the host will either use the single threaded implementation
(MPI only) or multi-threaded (MPI and OpenMP) implementation. The key issue in this case is
on assigning and managing the load on the different processors depending on their relative speeds
for solving a given mesh computation.

5.1 Hybrid CPU/GPU Execution

The OP2 back-end also supports the execution of the problem on both the CPUs and the GPUs
on a node. This is called a fully hybrid execution. Currently only applications written with the
Fortran back-end can utilize this feature, as this was developed for Rolls Royce’s Hydra. See [7]
for initial performance results.

The natural approach to enable hybrid CPU-GPU execution in OP2 is to assign some processes
to execute on the GPU and others to execute on the CPU. This hardware selection happens at
runtime: on a node with N GPUs, the first N processes assigned to it pick up a GPU and the
rest become CPU processes. To enable hybrid execution, the generated kernel files include code for
execution with both MPI+CUDA and MPI+OpenMP, thus at runtime the different MPI processes
assigned to different hardware can call the appropriate one.

The most important challenge with hybrid execution in general is to appropriately load balance
between different hardware so that both are utilized as much as possible. Finding such a balance for
simple applications where one computational phase (such as a single loop) dominates the runtime
may not be difficult. One only needs to compare execution times on the CPU and the GPU
separately and assign proportionally sized partitions to the two. However, for an application such
as Hydra consisting of several phases of computations, such a load balancing is not trivial: the
performance difference between the CPU and the GPU varies widely for different loops.

Currently the partitioning for a fully hybrid execution can only be carried out using the het-
erogeneous load balancing feature of ParMetis. This is set via run-time arguments:

export OP_HYBRID_BALANCE=2.5

mpirun -np 3 ./OP2_application

Figure 10: MPI+CUDA fully hybrid execution

If the above is executed on a 2 CPU node with a single GPU, a partition size balance of 2.5 implies
that the GPU executes a partition that is 2.5 times larger than a single CPU (i.e. 1.25 times larger
than the combined size of the partitions assigned to the two CPUs).

17

6 To do list

• Implement automatic check-pointing over MPI

References

[1] ParMETIS user manual,
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf

[2] Scotch and PTScotch,
http://www.labri.fr/perso/pelegrin/scotch/

[3] NVIDIA GPUDirect,
http://developer.nvidia.com/gpudirect

[4] METIS
http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf

[5] P. I. Crumpton and M. B. Giles, Multigrid Aircraft Computations Using the OPlus Parallel
Library, Parallel Computational Fluid Dynamics: Implementations and Results Using Parallel
Computers, 339-346, A. Ecer, J. Periaux, N. Satofuka, and S. Taylor, (eds.), North-Holland,
1996.

[6] D. A. Burgess and M. B. Giles. 1997. Renumbering unstructured grids to improve the perfor-
mance of codes on hierarchical memory machines. Adv. Eng. Softw. 28 (April 1997), 189–201.
Issue 3. ISSN 0965-9978.

[7] István Z. Reguly and Gihan R. Mudalige and Carlo Bertolli and Michael B. Giles and Adam
Betts and Paul H.J. Kelly and David Radford. Acceleration of a Full-scale Industrial CFD
Application with OP2 (Under Review)

18

	Introduction
	MPI parallelisation strategy
	Parallel Startup
	Constructing Halo Lists
	Halo Exchanges
	Partial Halo Exchange
	Global Operations
	Fetching Data
	Performance Measurements
	Garbage Collection

	HDF5 File I/O
	Partitioning
	Mesh Renumbering

	Heterogeneous Back-ends
	Hybrid CPU/GPU Execution

	To do list

