
OP2 Airfoil Example

Mike Giles, Gihan Mudalige, István Reguly

December 2013

1

Contents

1 Introduction 3

2 Airfoil - The Development CPU Version 3

3 Generating Single Node OpenMP and CUDA Executables 7

4 Building Airfoil for Distributed Memory (MPI) Execution 9

5 Airfoil with HDF5 I/O 12

6 OP2 Example Application Directory Structure and Cmake Build Process 15

2

1 Introduction

Airfoil, is an industrial representative CFD application benchmark, written using OP2’s

C/C++ API. In this document we detail its development using OP2 as a guide to application

developers wishing to write applications using the OP2 API and framework.

Full details of OP2 can be found at: http://www.oerc.ox.ac.uk/research/op2

Airfoil is a non-linear 2D inviscid airfoil code that uses an unstructured grid. It is

a finite volume application that solves the 2D Euler equations using a scalar numerical

dissipation. The algorithm iterates towards the steady state solution, in each iteration

using a control volume approach - for example the rate at which the mass changes within a

control volume is equal to the net flux of mass into the control volume across the four faces

around the cell. This is representative of the 3D viscous flow calculations OP2 supports

for production-grade CFD applications (such as the Hydra [1, 2] CFD code at Rolls Royce

plc.). Airfoil consists of five parallel loops: save soln, adt calc, res calc, bres calc

and update. Out of these, save soln and update are direct loops while the other three

are indirect loops. The standard mesh size solved with Airfoil consists of 1.5M edges. In

such a mesh the most compute intensive loop, res calc, is called 2000 times during the

total execution of the application and performs about 100 floating-point operations per

mesh edge. Extensive performance analysis of Airfoil and optimisations have been detailed

in our published work [3, 4, 5, 6]. What follows is a step-by-step treatment of the stages

involved in developing Airfoil. The application and generated code can be found under

OP2-Common/apps/c/airfoil.

2 Airfoil - The Development CPU Version

For the application developer wishing to utilise the OP2 framework for developing unstruc-

tured mesh codes, the first step is to develop the application assuming that the target

execution system is a traditional single threaded CPU. This simplifies the programming

complexity of the code by allowing the developer to concentrate on the application domain

and science involved and not the intricacies of parallel programming. During development

the code can be run without any OP2 code generation, on a single CPU thread by simply

including the op seq.h header file.

The Airfoil application level code (i.e. the code written by the domain scientist) consists

of only a main function (in airfoil.cpp) where it performs a time marching loop that

executes 1000 times, each iteration calling the above mentioned five loops. Each loop

iterates over a specified op set and the operations to be performed per iteration are detailed

in a header file for each loop: save soln.h, adt calc.h, res calc.h, bres calc.h and

update.h. The following code illustrates the declaration of the res calc loop, which iterates

over the edges of the mesh.

3

http://www.oerc.ox.ac.uk/research/op2

// calculate flux residual

op_par_loop(res_calc,"res_calc",edges,

op_arg_dat(p_x, 0,pedge, 2,"double",OP_READ),

op_arg_dat(p_x, 1,pedge, 2,"double",OP_READ),

op_arg_dat(p_q, 0,pecell,4,"double",OP_READ),

op_arg_dat(p_q, 1,pecell,4,"double",OP_READ),

op_arg_dat(p_adt, 0,pecell,1,"double",OP_READ),

op_arg_dat(p_adt, 1,pecell,1,"double",OP_READ),

op_arg_dat(p_res, 0,pecell,4,"double",OP_INC),

op_arg_dat(p_res, 1,pecell,4,"double",OP_INC));

Figure 1: res calc loop

// OP2 header file

#include "op_seq.h"

// global constants

double gam, gm1, cfl, eps, mach, alpha, qinf[4];

// user kernel routines for parallel loops

#include "save_soln.h"

#include "adt_calc.h"

#include "res_calc.h"

#include "bres_calc.h"

#include "update.h"

Figure 2: Header and global constants

The first argument specifies the name of the function (implemented in res calc.h) that

contains the operations to be performed per iteration in the loop. The second argument

notes the name of the loop, while the third specifies the op set over which the loop will

iterate. The remaining arguments specify the access descriptors of the data used in the

loop. More details of the op arg dat API statements are given in the user guide.

For Airfoil, airfoil.cpp include the OP2 header files and the elemental kernel header

files as follows. Additionally global constants must be declared before the main() function.

The main function of an OP2 applications need to begin with the initialisation statement

op init() before any other OP2 API statements can be called. The Airfoil application

then reads in the input mesh file. As detailed in the user documentation, OP2 allows the

application developer to carry out their own I/O or utilise hdf5 based I/O using OP2’s

hdf5 API statements. We first detail the development of Airfoil assuming that file I/O

is implemented by the application developer. Later in Section 5 we will detail the Airfoil

application written utilising OP2’s hdf5 file I/O capabilities.

Assume that the application reads an ASCI file using standard C++ file I/O statements

to read in the input mesh and allocate memory to hold the data. The data is then passed

4

to the appropriate OP2 declaration statements to declare op sets, op maps and op dats as

follows:

op_set nodes = op_decl_set(nnode, "nodes");

op_set edges = op_decl_set(nedge, "edges");

op_set bedges = op_decl_set(nbedge, "bedges");

op_set cells = op_decl_set(ncell, "cells");

op_map pedge = op_decl_map(edges, nodes,2,edge, "pedge");

op_map pecell = op_decl_map(edges, cells,2,ecell, "pecell");

op_map pbedge = op_decl_map(bedges,nodes,2,bedge, "pbedge");

op_map pbecell = op_decl_map(bedges,cells,1,becell,"pbecell");

op_map pcell = op_decl_map(cells, nodes,4,cell, "pcell");

op_dat p_bound = op_decl_dat(bedges,1,"int" , bound ,"p_bound");

op_dat p_x = op_decl_dat(nodes ,2,"double", x ,"p_x");

op_dat p_q = op_decl_dat(cells ,4,"double", q ,"p_q");

op_dat p_qold = op_decl_dat(cells ,4,"double", qold ,"p_qold");

op_dat p_adt = op_decl_dat(cells ,1,"double", adt ,"p_adt");

op_dat p_res = op_decl_dat(cells ,4,"double", res ,"p_res");

op_decl_const(1,"double",&gam);

op_decl_const(1,"double",&gm1);

op_decl_const(1,"double",&cfl);

op_decl_const(1,"double",&eps);

op_decl_const(1,"double",&mach);

op_decl_const(1,"double",&alpha);

op_decl_const(4,"double",qinf);

Figure 3: OP2 set, map and dat declarations

Four sets are declared (nodes, edges, bedges and cells) and five mappings between sets

are declared to establish connectivity between sets. The six data arrays are declared on the

sets bedges, nodes and cells. Any constants used by the program are also declared at this

point using op decl const(). The five parallel loops that make up the Airfoil application

are detailed next within a time-marching loop.

Finally, statistics about the performance of the application can be printed to stdout

using op timing output() and OP2 is terminated with op exit(), deallocating internal

OP2 allocated memory. If the application developer allocated memory, for example to read

in the mesh, then he/she will need to manually deallocate memory at this point.

During development, by simply including the op seq.h header file application can be

compiled by a conventional compiler (gcc, icc etc.) to produce an executable that can be run

on a single threaded CPU. No code generation is required at this stage, where the application

5

//main time-marching loop

for(int iter=1; iter<=niter; iter++) {

// save old flow solution

op_par_loop(save_soln, ...);

// predictor/corrector update loop

for(int k=0; k<2; k++) {

// calculate area/timstep

op_par_loop(adt_calc, ...);

// calculate flux residual

op_par_loop(res_calc, ...);

op_par_loop(bres_calc, ...);

// update flow field

op_par_loop(update, ...);

}

...

}

Figure 4: Time marching loop

developer is only using the single threaded executable for debugging and development. This

enable the developer to build the application and test its accuracy without considering

any parallelisation issues. The compilation of the application for single-threaded CPUs is

achieved by linking with the OP2 sequential library libop2 seq.a, for example as follows:

OP2_INC = -I$(OP2_INSTALL_PATH)/c/include

OP2_LIB = -L$(OP2_INSTALL_PATH)/c/lib

CPP = icpc

CPPFLAGS = -O3 -xSSE4.2

airfoil_seq: airfoil.cpp save_soln.h adt_calc.h res_calc.h \

bres_calc.h update.h

$(CPP) $(CPPFLAGS) airfoil.cpp \

$(OP2_INC) $(OP2_LIB) -lop2_seq -o airfoil_seq

Figure 5: Sequential developer version build

Once the application is debugged and tested on a single CPU, OP2’s code generation capa-

bilities can be used to generate executables for different parallel architectures. We will use

OP2’s Python code parser for code generation throughout this document. Specific details

of the build process for each target back-end is detailed in the next sections.

6

3 Generating Single Node OpenMP and CUDA Executables

This section will detail code generation for a single CPU node (SMP or CMP node) or a

single GPU, targeting OpenMP and NVIDIA CUDA respectively. First, the code generator

needs to be invoked, for example for parsing airfoil.cpp:

$ > ./op2.py airfoil.cpp

The code generator will produce a modified main program and back-end specific code.

In this case airfoil.cpp will be transformed to airfoil op.cpp and a kernel file will

be produced corresponding to each op par loop in the main program (* kernel.cpp for

OpenMP and * kernel.cu for CUDA). For running on SMP CPU nodes, OpenMP is

utilised. The executable can be built by compiling the code with a conventional C++

compiler and linking with the openmp back-end library, libop2 openmp.a, for example as

follows:

OP2_INC = -I$(OP2_INSTALL_PATH)/c/include

OP2_LIB = -L$(OP2_INSTALL_PATH)/c/lib

CPP = icpc

CPPFLAGS = -O3 -xSSE4.2

OMPFLAGS = -openmp -openmp-report2

airfoil_openmp: airfoil_op.cpp airfoil_kernels.cpp \

save_soln_kernel.cpp save_soln.h \

adt_calc_kernel.cpp adt_calc.h \

res_calc_kernel.cpp res_calc.h \

bres_calc_kernel.cpp bres_calc.h \

update_kernel.cpp update.h

$(CPP) $(CPPFLAGS) $(OMPFLAGS) $(OP2_INC) $(OP2_LIB) \

airfoil_op.cpp airfoil_kernels.cpp \

-lm -lop2_openmp -o airfoil_openmp

Figure 6: OpenMP version build

The airfoil kernels.cpp includes all the * kernel.cpp files. This is why it is the only

file appearing in the compile line. The airfoil openmp can be run on multiple OpenMP

threads by setting the OMP NUM THREADS environmental variable.

7

For running on a single GPU, NVIDIA CUDA is utilised. The executable can be built by

compiling with nvcc and a conventional C++ compiler and linking with the CUDA back-end

library, libop2 cuda.a, for example as follows:

OP2_INC = -I$(OP2_INSTALL_PATH)/c/include

OP2_LIB = -L$(OP2_INSTALL_PATH)/c/lib

CPP = icpc

CPPFLAGS = -O3 -xSSE4.2

CUDA_INC = -I$(CUDA_INSTALL_PATH)/include

CUDA_LIB = -L$(CUDA_INSTALL_PATH)/lib64

NVCCFLAGS = -O3 -arch=sm_20 -Xptxas=-v -Dlcm=ca -use_fast_math

airfoil_cuda: airfoil_op.cpp airfoil_kernels_cu.o

$(CPP) $(CPPFLAGS) $(CUDA_INC) $(OP2_INC) \

$(OP2_LIB) $(CUDA_LIB) \

airfoil_op.cpp airfoil_kernels_cu.o -lcudart \

-lop2_cuda -o airfoil_cuda

airfoil_kernels_cu.o: airfoil_kernels.cu \

save_soln_kernel.cu save_soln.h \

adt_calc_kernel.cu adt_calc.h \

res_calc_kernel.cu res_calc.h \

bres_calc_kernel.cu bres_calc.h \

update_kernel.cu update.h

nvcc $(NVCCFLAGS) $(OP2_INC) \

-c -o airfoil_kernels_cu.o \

airfoil_kernels.cu

Figure 7: CUDA version build

Similar to the OpenMP compilation, the airfoil kernels.cu includes all the * kernel.cu

files. When airfoil cuda is executed, it will select any available GPU on the system. The

GPU to be selected can be set by using the CUDA VISIBLE DEVICES environment variable.

The steps are illustrated in Figure 8.

8

airfoil.cpp +

save_soln.h, adt_calc.h, res_calc.h,

bres_calc.h, update.h

airfoil_seq airfoil_cuda airfoil_openmp

airfoil_op.cpp +

*_kernel.cpp/*_kernel.cu

Compile + link

(libop2_seq.a)

Code generation

Compile + link

(libop2_cuda.a)

Compile + link

(libop2_openmp.a)

Figure 8: Single-node Code generation and build for Airfoil (with user I/O)

4 Building Airfoil for Distributed Memory (MPI) Execution

If the application developer decides to be responsible for the application’s I/O, i.e. for read-

ing in the unstructured mesh, then for distributed memory execution of the application, par-

allelising the I/O process cannot be simply automated. As such OP2’s code generation tools

does not support generating an MPI based application, by simply parsing airfoil.cpp.

What is required is the development of airfoil mpi.cpp that explicitly codes the parallel

I/O. The only difference between airfoil.cpp and airfoi mpi.cpp is that the latter hands

partitions of the op sets, op maps and op dats that resides on each MPI process to OP2 via

op decl * statements (see OP2-Common/airfoil/dp/airfoi mpi.cpp). OP2 supports the

development of such an MPI application, without the need for any code generation. Similar

to the development process for a single threaded CPU, all that is required is to include

the op seq.h header file. The MPI application can be built by compiling with mpiCC and

linking with the MPI back-end library, libop2 mpi.a, for example as follows:

The unstructured mesh, will be repartitioned by OP2, using parallel graph/mesh partition-

ing libraries (ParMetis or PTScotch) as detailed in the user documentation. Thus linking

with the appropriate mesh partitioning library will also be needed as detailed above. The

resulting executable, airfoil mpi, can be executed on a cluster of single threaded CPUs,

with the use of the usual mpirun command.

9

MPICPP = mpiCC

MPIFLAGS = -O3 -xSSE4.2

PARMETIS_INC = -I$(PARMETIS_INSTALL_PATH) -DHAVE_PARMETIS

PARMETIS_LIB = -L$(PARMETIS_INSTALL_PATH) -lparmetis \

-L$(PARMETIS_INSTALL_PATH) -lmetis

PTSCOTCH_INC = -I$(PTSCOTCH_INSTALL_PATH)/include -DHAVE_PTSCOTCH

PTSCOTCH_LIB = -L$(PTSCOTCH_INSTALL_PATH)/lib/ -lptscotch \

-L$(PTSCOTCH_INSTALL_PATH)/lib/ -lptscotcherr

airfoil_mpi: airfoil_mpi.cpp \

save_soln.h adt_calc.h res_calc.h bres_calc.h Makefile

$(MPICPP) $(MPIFLAGS) $(OP2_INC) \

$(PARMETIS_INC) $(PTSCOTCH_INC) \

$(OP2_LIB) airfoil_mpi.cpp -lop2_mpi \

$(PARMETIS_LIB) $(PTSCOTCH_LIB) -o airfoil_mpi

Figure 9: MPI version build

Once developed, airfoi mpi.cpp can be used to generate the code required to build

the application for execution on distributed memory heterogeneous systems. Currently

supported systems, are a cluster of multi-threaded CPUs (Using MPI and OpenMP) and a

cluster of GPUs (using MPI and CUDA). The code generator needs to be invoked on the

mpi program to generate MPI+OpenMP and MPI+CUDA versions of the application. For

example, to generate distributed memory code from airfoil mpi.cpp:

$ > ./op2.py airfoil mpi.cpp

Similar to the single-node parallel version, the code generator will produce a modified main

program and back-end specific code. The build steps are illustrated in Figure 12. In this

case airfoil mpi.cpp will be transformed to airfoil mpi op.cpp and a kernel file will

be produced corresponding to each op par loop in the main program (* kernel.cpp for

OpenMP and * kernel.cu for CUDA). By design these kernel files will be identical to the

kernel files created for the single-node parallel back-ends. The executable for a cluster of

multi-threaded CPUs can be built by compiling the code using a conventional C++ com-

piler and linking with the back-end library, libop2 mpi.a (see Figure 10). Note that the

linking library is the same op2 library used when building the pure MPI version. This is

simply due to the fact that there are no special functionality needed in the backend library

to enable OpenMP parallelisam on top of MPI.

airfoil mpi openmp needs to be executed using mpirun and will utilise OMP NUM THREADS

per MPI process on the multi-threaded CPU cluster during execution.

10

airfoil_mpi_openmp: airfoil_mpi_op.cpp airfoil_kernels.cpp \

save_soln_kernel.cpp save_soln.h \

adt_calc_kernel.cpp adt_calc.h \

res_calc_kernel.cpp res_calc.h \

bres_calc_kernel.cpp bres_calc.h \

update_kernel.cpp update.h \

Makefile

$(MPICPP) $(MPIFLAGS) $(OMPFLAGS) \

airfoil_mpi_op.cpp \

airfoil_kernels.cpp \

$(OP2_INC) $(PARMETIS_INC) $(PTSCOTCH_INC) \

$(OP2_LIB) -lop2_mpi \

$(PARMETIS_LIB) $(PTSCOTCH_LIB) -o airfoil_mpi_openmp

Figure 10: MPI+OpenMP version build

The executable for a cluster of GPUs can be built by compiling the code using a con-

ventional C++ compiler, CUDA compiler nvcc and linking with the back-end library,

libop2 mpi cuda.a, for example as follows:

airfoil_mpi_cuda: airfoil_mpi_op.cpp airfoil_kernels_mpi_cu.o Makefile

$(MPICPP) $(MPIFLAGS) airfoil_mpi_op.cpp \

airfoil_kernels_mpi_cu.o \

$(OP2_INC) $(PARMETIS_INC) $(PTSCOTCH_INC) \

$(OP2_LIB) -lop2_mpi_cuda $(PARMETIS_LIB) \

$(PTSCOTCH_LIB) \

$(CUDA_LIB) -lcudart -o airfoil_mpi_cuda

airfoil_kernels_mpi_cu.o: airfoil_kernels.cu \

save_soln_kernel.cu save_soln.h \

adt_calc_kernel.cu adt_calc.h \

res_calc_kernel.cu res_calc.h \

bres_calc_kernel.cu bres_calc.h \

update_kernel.cu update.h \

Makefile

nvcc $(INC) $(NVCCFLAGS) $(OP2_INC) \

-I $(MPI_INSTALL_PATH)/include \

-c -o airfoil_kernels_mpi_cu.o airfoil_kernels.cu

Figure 11: MPI+CUDA version build

airfoil mpi cuda needs to be executed using mpirun and will utilise one GPU per MPI

process on the GPU cluster during execution.

11

airfoil_mpi.cpp + save_soln.h, adt_calc.h,

res_calc.h, bres_calc.h, update.h

airfoil_mpi airfoil_mpi_cuda airfoil_mpi_openmp

airfoil_mpi_op.cpp +

*_kernel.cpp/*_kernel.cu

Compile + link

(libop2_mpi.a)

Code generation

Compile + link

(libop2_mpi_cuda.a)

Compile + link

(libop2_mpi.a)

Figure 12: Distributed memory code generation and build for Airfoil (with user I/O)

5 Airfoil with HDF5 I/O

If OP2’s file I/O is utilised when developing the application then all code required for all

the target back-ends will be generated by parsing the airfoil.cpp file. This includes the

distributed memory (MPI) back-ends. The code generation and application build process is

summarised in Figure 13. The code generator produces a common modified main program in

airfoil op.cpp and kernel files, which is then linked with the appropriate OP2 back-ends

libraries to give the desired target executable.

airfoil.cpp +

save_soln.h, adt_calc.h, res_calc.h, bres_calc.h, update.h

airfoil_seq airfoil_cuda airfoil_openmp

airfoil_op.cpp + *_kernel.cpp/*_kernel.cu

Compile + link

(libop2_seq.a+

libop2_hdf5.a)

Code generation

Compile + link

(libop2_cuda.a+

libop2_hdf5.a)

Compile + link

(libop2_openmp.a+

libop2_hdf5.a)

airfoil_mpi airfoil_mpi_cuda airfoil_mpi_openmp

Compile + link

(libop2_mpi.a)

Compile + link

(libop2_mpi_cuda.a)

Compile + link

(libop2_mpi.a)

Figure 13: Code generation and build for Airfoil (with OP2 HDF5 file I/O)

12

The library libop2 hdf5.a needs to be linked when building single node executables, for

example:

HDF5_INC = -I$(HDF5_INSTALL_PATH)/include

HDF5_LIB = -L$(HDF5_INSTALL_PATH)/lib -lhdf5 -lz

airfoil_cuda: airfoil_op.cpp airfoil_kernels_cu.o Makefile

$(MPICPP) $(CPPFLAGS) airfoil_op.cpp airfoil_kernels_cu.o \

$(CUDA_INC) $(OP2_INC) $(HDF5_INC) \

$(OP2_LIB) $(CUDA_LIB) -lcudart -lop2_cuda -lop2_hdf5 \

$(HDF5_LIB) -o airfoil_cuda

airfoil_kernels_cu.o: airfoil_kernels.cu \

save_soln_kernel.cu save_soln.h \

adt_calc_kernel.cu adt_calc.h \

res_calc_kernel.cu res_calc.h \

bres_calc_kernel.cu bres_calc.h \

update_kernel.cu update.h \

Makefile

nvcc $(INC) $(NVCCFLAGS) $(OP2_INC) $(HDF5_INC) \

-I /home/gihan/openmpi-intel/include \

-c -o airfoil_kernels_cu.o airfoil_kernels.cu

Figure 14: CUDA with HDF5 build

13

On the other hand the functions facilitating MPI parallel file I/O with hdf5 are contained

in the MPI back-end implicitly. Thus linking should not be done with libop2 hdf5.a in

this case, for example:

HDF5_INC = -I$(HDF5_INSTALL_PATH)/include

HDF5_LIB = -L$(HDF5_INSTALL_PATH)/lib -lhdf5 -lz

airfoil_mpi_cuda: airfoil_op.cpp airfoil_kernels_mpi_cu.o Makefile

$(MPICPP) $(MPIFLAGS) airfoil_op.cpp \

-lm airfoil_kernels_mpi_cu.o \

$(OP2_INC) $(PARMETIS_INC) $(PTSCOTCH_INC) $(HDF5_INC) \

$(OP2_LIB) -lop2_mpi_cuda \

$(PARMETIS_LIB) $(PTSCOTCH_LIB) \

$(HDF5_LIB) $(CUDA_LIB) -lcudart -o airfoil_mpi_cuda

airfoil_kernels_mpi_cu.o: airfoil_kernels.cu \

save_soln_kernel.cu save_soln.h \

adt_calc_kernel.cu adt_calc.h \

res_calc_kernel.cu res_calc.h \

bres_calc_kernel.cu bres_calc.h \

update_kernel.cu update.h \

Makefile

nvcc $(INC) $(NVCCFLAGS) $(OP2_INC) \

-I $(MPI_INSTALL_PATH)/include \

-c -o airfoil_kernels_mpi_cu.o airfoil_kernels.cu

Figure 15: MPI+CUDA with HDF5 build

14

6 OP2 Example Application Directory Structure and Cmake

Build Process

Airfoil is one of several example applications that is available with the public OP2 release.

Currently there are three example applications: Airfoil, Aero and Jac1. The the C++

versions of these applications appear under OP2-Common/apps/c directory. Both Airfoil and

Aero has been implemented using both hdf5 I/O and plain ASCI file I/O (as an example

of user specified I/O). The /sp and /dp directories in each gives the single- and double-

precision versions of the application. These versions have been used extensively in our

published work for performance benchmarking of OP2.

Each individual application can be built by invoking make in the respective directory.

There is also a cmake build process that will build all the applications (for all back-ends).

Invoking ./cmake.local within in the OP2-Common/apps/c directory will build and install

the applications in OP2-Common/apps/c/bin. More details are given in the README file.

References

[1] Giles, M. Hydra. http://people.maths.ox.ac.uk/gilesm/hydra.html.

[2] Giles, M. B., Duta, M. C., Muller, J. D., and Pierce, N. A. Algorithm Developments

for Discrete Adjoint Methods. AIAA Journal 42, 2 (2003), 198–205.

[3] Giles, M. B., Mudalige, G. R., Sharif, Z., Markall, G., and Kelly, P. H. J. Per-

formance analysis of the OP2 framework on many-core architectures. SIGMETRICS Perform.

Eval. Rev. 38, 4 (March 2011), 9–15.

[4] Giles, M. B., Mudalige, G. R., Sharif, Z., Markall, G., and Kelly, P. H. J. Per-

formance analysis and optimization of the OP2 framework on many-core architectures. The

Computer Journal 55, 2 (2012), 168–180.

[5] Mudalige, G. R., Giles, M. B., Bertolli, C., and Kelly., P. H. J. Predictive modeling

and analysis of OP2 on distributed memory GPU clusters. SIGMETRICS Perform. Eval. Rev.

40, 2 ((to appear)2012).

[6] Mudalige, G. R., Reguly, I., Giles, M. B., Bertolli, C., and Kelly., P. H. J. OP2:

An active library framework for solving unstructured mesh-based applications on multi-core and

many-core architectures. In Proceedings of Innovative Parallel Computing (InPar ’12). (San

Jose, California, May 2012), IEEE.

1jac1 and jac2 implement the same application but jac2 differs in that it is intended to be a debugging

application for the MATLAB generator

15

http://people.maths.ox.ac.uk/gilesm/hydra.html

	Introduction
	Airfoil - The Development CPU Version
	Generating Single Node OpenMP and CUDA Executables
	Building Airfoil for Distributed Memory (MPI) Execution
	Airfoil with HDF5 I/O
	OP2 Example Application Directory Structure and Cmake Build Process

