
OP2 C++ User’s Manual

Mike Giles, Gihan R. Mudalige, István Reguly

May 2019

1

Contents

1 Introduction 3

2 Overview 4

3 OP2 C++ API 7
3.1 Initialisation and termination routines . 7

op init . 7
op exit . 7
op decl set . 7
op decl map . 7
op decl const . 8
op decl dat . 8
op decl dat tmp . 9
op free dat tmp . 9
op diagnostic output . 9

3.2 Parallel loop syntax . 10
op par loop . 10
op arg gbl . 10
op arg dat . 11
op arg dat opt . 11

3.3 Expert user capabilities . 12
3.3.1 SoA data layout . 12
3.3.2 Vector maps . 13

3.4 MPI message-passing using HDF5 files . 14
op decl set hdf5 . 14
op decl map hdf5 . 14
op decl dat hdf5 . 14
op get const hdf5 . 14
op partition . 14

3.5 Other I/O and Miscellaneous Routines . 16
op printf . 16
op fetch data . 16
op fetch data idx . 16
op fetch data hdf5 file . 16
op print dat to binfile . 16
op print dat to txtfile . 17
op is root . 17
op get size . 17
op dump to hdf5 . 17
op timers . 17
op timing output . 17
op timings to csv . 17

3.6 MPI message-passing without HDF5 files . 18

4 Executing with GPUDirect 19

2

5 OP2 Preprocessor/ Code generator 20
5.1 MATLAB preprocessor . 20
5.2 Python code generator . 20

6 Error-checking 21

7 32-bit and 64-bit CUDA 22

3

1 Introduction

OP2 is a high-level framework with associated libraries and preprocessors to generate parallel
executables for applications on unstructured grids. This document describes the C++ API, but
FORTRAN 90 is also supported with a very similar API.

The key concept behind OP2 is that unstructured grids can be described by a number of sets.
Depending on the application, these sets might be of nodes, edges, faces, cells of a variety of types,
far-field boundary nodes, wall boundary faces, etc. Associated with these are data (e.g. coordinate
data at nodes) and mappings to other sets (e.g. edge mapping to the two nodes at each end of the
edge). All of the numerically-intensive operations can then be described as a loop over all members
of a set, carrying out some operations on data associated directly with the set or with another set
through a mapping.

OP2 makes the important restriction that the order in which the function is applied to the
members of the set must not affect the final result to within the limits of finite precision floating-
point arithmetic. This allows the parallel implementation to choose its own ordering to achieve
maximum parallel efficiency. Two other restrictions are that the sets and maps are static (i.e. they
do not change) and the operands in the set operations are not referenced through a double level of
mapping indirection (i.e. through a mapping to another set which in turn uses another mapping to
data in a third set).

OP2 currently enables users to write a single program which can be built into three different
executables for different single-node platforms:

• single-threaded on a CPU

• parallelised using CUDA for NVIDIA GPUs

• multi-threaded using OpenMP for multicore CPU systems

A current development branch, also supports AVX vectorisation for x86 CPUs, and OpenCL for
both CPUs and GPUS. In addition to this, there is support for distributed-memory MPI paral-
lelisation in combination with any of the above. The user can either use OP2’s parallel file I/O
capabilities for HDF5 files with a specified structure, or perform their own parallel file I/O using
custom MPI code.

4

2 Overview

A computational project can be viewed as involving three steps:

• writing the program

• debugging the program, often using a small testcase

• running the program on increasingly large applications

With OP2 we want to simplify the first two tasks, while providing as much performance as possible
for the third.

To achieve the high performance for large applications, a preprocessor is needed to generate the
CUDA code for GPUs or OpenMP code for multicore x86 systems. However, to keep the initial
development simple, a development single-threaded executable can be created without any special
tools; the user’s main code is simply linked to a set of library routines, most of which do little
more than error-checking to assist the debugging process by checking the correctness of the user’s
program. Note that this single-threaded version will not execute efficiently. The preprocessor is
needed to generate efficient single-threaded and OpenMP code for CPU systems.

Figure 1 shows the build process for a single thread CPU executable. The user’s main program
(in this case jac.cpp) uses the OP2 header file op seq.h and is linked to the appropriate OP2
libraries using g++, perhaps controlled by a Makefile.

Figure 2 shows the build process for the corresponding CUDA executable. The preprocessor parses
the user’s main program and produces a modified main program and a CUDA file which includes
a separate file for each of the kernel functions. These are then compiled and linked to the OP
libraries using g++ and the NVIDIA CUDA compiler nvcc, again perhaps controlled by a Makefile.

Figure 3 shows the OpenMP build process which is very similar to the CUDA process except that
it uses *.cpp files produced by the preprocessor instead of *.cu files.

In looking at the API specification, users may think it is a little verbose in places. e.g. users have
to re-supply information about the datatype of the datasets being used in a parallel loop. This is a
deliberate choice to simplify the task of the preprocessor, and therefore hopefully reduce the chance
for errors. It is also motivated by the thought that “programming is easy; it’s debugging
which is difficult”. i.e. writing code isn’t time-consuming, it’s correcting it which takes the time.
Therefore, it’s not unreasonable to ask the programmer to supply redundant information, but be
assured that the preprocessor or library will check that all redundant information is self-consistent.
If you declare a dataset as being of type OP DOUBLE and later say that it is of type OP FLOAT this
will be flagged up as an error at run-time.

5

op seq.h jac.cpp- libraries

? ?'

&

$

%
make / g++

Figure 1: Build process for the development single threaded CPU version

jac.cpp

?'

&

$

%
preprocessor / code generator

? ? ?

jac op.cpp jac kernels.cu
res kernel.cu

update kernel.cu
libraries

? ? ?

�

'

&

$

%
make / nvcc / g++

Figure 2: CUDA code build process

6

jac.cpp

?'

&

$

%
preprocessor / code generator

? ? ?

jac op.cpp jac kernels.cpp
res kernel.cpp

update kernel.cpp
libraries

? ? ?

�

'

&

$

%
make / icc

Figure 3: OpenMP code build process

7

3 OP2 C++ API

3.1 Initialisation and termination routines

void op init(int argc, char **argv, int diags level)
This routine must be called before all other OP routines. Under MPI back-ends, this routine also
calls MPI Init() unless its already called previously

argc, argv the usual command line arguments

diags level an integer which defines the level of debugging diagnostics and reporting to
be performed;
0 – none;
1 – error-checking;
2 – info on plan construction;
3 – report execution of parallel loops;
4 – report use of old plans;
7 – report positive checks in op plan check;

void op exit()
This routine must be called last to cleanly terminate the OP computation. Under MPI back-ends,
this routine also calls MPI Finalize() unless its has been called previously. A runtime error will
occur if MPI Finalize() is called after op exit()

op set op decl set(int size, char *name)
This routine defines a set, and returns a set ID.

size number of elements in the set

name a name used for output diagnostics

op map op decl map(op set from, op set to, int dim, int *imap, char *name)
This routine defines a mapping from one set to another, and returns a map ID.

from set pointed from

to set pointed to

dim number of mappings per element

imap input mapping table

name a name used for output diagnostics

8

void op decl const(int dim, char *type, T *dat, char *name)
This routine declares constant data with global scope to be used in user’s kernel functions. Note:
in sequential version, it is the user’s responsibility to define the appropriate variable with global
scope.

dim dimension of data (i.e. array size)

for maximum efficiency, this should be a literal constant (i.e. a number not
a variable)

type datatype, either intrinsic (“float”, “double”, “int”, “uint”, “ll”, “ull” or
“bool”) or user-defined

dat input data of type T (checked for consistency with type at run-time)

name global name to be used in user’s kernel functions;
a scalar variable if dim=1, otherwise an array of size dim

op dat op decl dat(op set set, int dim, char *type, T *data, char *name)
This routine defines a dataset, and returns a dataset ID.

set set

dim dimension of dataset (number of items per set element)

at present this must be a literal constant (i.e. a number not a variable); this
restriction will be removed in the future but a literal constant will remain
more efficient

type datatype, either intrinsic or user-defined – expert users can add a qualifier
to control data layout and management within OP2 (see section 3.3)

data input data of type T (checked for consistency with type at run-time) – for
each element in set, the dim data items muct be contiguous, but OP2 may
use a different data layout internally for better performance on certain hard-
ware platforms (see section 3.3)

name a name used for output diagnostics

9

op dat op decl dat tmp(op set set, int dim, char *type, char *name)
This routine defines a temporary dataset, initialises it to zero, and returns a dataset ID.

set set

dim dimension of dataset (number of items per set element)

at present this must be a literal constant (i.e. a number not a variable); this
restriction will be removed in the future but a literal constant will remain
more efficient

type datatype, either intrinsic or user-defined – expert users can add a qualifier
to control data layout and management within OP2 (see section 3.3)

name a name used for output diagnostics

void op free dat tmp(op dat dat)
This routine terminates a temporary dataset.

dat OP dataset ID

void op diagnostic output()
This routine prints out various useful bits of diagnostic info about sets, mappings and datasets

10

3.2 Parallel loop syntax

A parallel loop with N arguments has the following syntax:

void op par loop(void (*kernel)(...), char *name, op set set,
op arg arg1, op arg arg2, . . . , op arg argN)

kernel user’s kernel function with N arguments
(this is only used for the single-threaded CPU build)

name name of kernel function, used for output diagnostics

set OP set ID

args arguments

The op arg arguments in op par loop are provided by one of the following routines, one for global
constants and reductions, and the other for OP2 datasets. In the future there will be a third one
for sparse matrices to support the needs of finite element calculations.

op arg op arg gbl(T *data, int dim, char *typ, op access acc)

data data array

dim array dimension

typ datatype (redundant info, checked at run-time for consistency)

acc access type:
OP READ: read-only
OP INC: global reduction to compute a sum
OP MAX: global reduction to compute a maximum
OP MIN: global reduction to compute a minimum

11

op arg op arg dat(op dat dat, int idx, op map map,
int dim, char *typ, op access acc)

dat OP dataset ID

idx index of mapping to be used (ignored if no mapping indirection) – a negative
value indicates that a range of indices is to be used (see section 3.3 for
additional information)

map OP mapping ID (OP ID for identity mapping, i.e. no mapping indirection)

dim dataset dimension (redundant info, checked at run-time for consistency)

at present this must be a literal constant (i.e. a number not a variable); this
restriction will be removed in the future but a literal constant will remain
more efficient

typ dataset datatype (redundant info, checked at run-time for consistency)

acc access type:
OP READ: read-only
OP WRITE: write-only, but without potential data conflict
OP RW: read and write, but without potential data conflict
OP INC: increment, or global reduction to compute a sum

The restriction that OP WRITE and OP RW access must not have any potential
data conflict means that two different elements of the set cannot through a
mapping indirection reference the same elements of the dataset.

Furthermore, with OP WRITE the user’s kernel function must set the value
of all DIM components of the dataset. If the user’s kernel function does not
set all of them, the access should be specified to be OP RW since the kernel
function needs to read in the old values of the components which are not
being modified.

op arg op opt arg dat(op dat dat, int idx, op map map,
int dim, char *typ, op access acc, int flag)

This is the same as op arg op arg dat except for an extra variable flag;
the argument is only actually used if flag has a non-zero value. This routine
is required for large application codes (such as HYDRA) which has lots of
different features turned on and off by logical flags.

Note that if the user’s kernel needs to know the value of flag then this must
be passed as an additional op arg gbl argument.

The pointer corresponding to the optional argument in the user kernel must
not be dereferenced when the flag is false or not set

12

http://people.maths.ox.ac.uk/gilesm/hydra.html

3.3 Expert user capabilities

3.3.1 SoA data layout

At present we have an option to force OP2 to use SoA (struct of arrays) storage internally on
GPUs. As illustrated in Figure 4 the user always supplies data in AoS (array of structs) layout,
with all of the items associated with one set element stored contiguously. On cache-based CPUs
this is almost always the most efficient storage layout because it usually maximises the cache hit
ratio and reuse of data. However, when doing vector computing (either on GPUs or in the AVX
vector units of CPUs) with no indirect addressing, then the SoA format is more efficient.

OP2 can be directed to use the SoA format by setting the environment variable OP AUTO SOA=1
before the Python code generator is used. Note that the data should still be supplied by the user
in the standard AoS layout; the transposition to SoA format is handled internally by OP2. No
changes need to be made to any other user code.

AoS 0 0 0 0 01 1 1 1 12 2 2 2 23 3 3 3 3

SoA 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

6

op2 stride

Figure 4: The AoS and SoA layouts for a set with 5 elements, and 4 data items (numbered 0, 1, 2,
3) per element, and the access stride for the SoA storage.

13

3.3.2 Vector maps

When each of the arguments in a parallel loop uses a single mapping index, the corresponding
argument in the user’s kernel function is a pointer to an array holding the data items for the set
element being pointed to. i.e. the kernel declaration may look something like
kernel routine(float *arg1, float *arg2, float *arg3, float *arg4)

If the first 3 arguments correspond to the vertices of a triangle, and the parallel loop is over the
set of triangles using a mapping from triangles to vertices, then it may be more natural to combine
the first 3 arguments into a single doubly-indexed array as
kernel routine(float *arg1[3], float *arg4)

This is obtained by a parallel loop argument having a range of mapping indices (instead of just
one) which is accomplished by specifying the mapping index to be -range – this means that the
set of mapping indices 0 - range-1 is to be used.

14

3.4 MPI message-passing using HDF5 files

HDF5 has become the de facto standard format for parallel file I/O, with various other standards
like CGNS layered on top. To make it as easy as possible for users to develop distributed-memory
OP2 applications, we provide alternatives to some of the OP2 routines in which the data is read
by OP2 from an HDF5 file, instead of being supplied by the user:

• op decl set hdf5: similar to op decl set but with size replaced by char *file which
defines the HDF5 file from which size is read using keyword name

• op decl map hdf5: similar to op decl map but with imap replaced by char *file from
which the mapping table is read using keyword name

• op decl dat hdf5: similar to op decl dat but with dat replaced by char *file from which
the data is read using keyword name

In addition, there are the following two routines.

op get const hdf5(int dim, char *type, char *file, char *name)
This routine reads a constant (or constant array) from an HDF5 file; if required, the user must
then call op decl const to declare it to OP2.

dim dimension of data (i.e. array size)

for maximum efficiency, this should be a literal constant (i.e. a number not
a variable)

type datatype, either intrinsic (“float”, “double”, “int”, “uint”, “ll”, “ull” or
“bool”) or user-defined; checked at run-time for consistency with T

file name of the HDF5 file

name global name to be used in user’s kernel functions;
a scalar variable if dim=1, otherwise an array of size dim

void op partition(char *lib name, const char* lib routine,
op set prime set, op map prime map, op dat coords)

This routine controls how the various sets are partitioned.

lib name A string which declares the partitioning library to be used.

“PTSCOTCH” - PT-Scotch
“PARMETIS” - ParMetis
“INERTIAL” - 3D recursive inertial bisection partitioning in OPlus

“EXTERNAL” - external partitioning read in from hdf5 file
“RANDOM” - select a generic random partitioning (for debugging)

If the OP2 library was not built with the specified third-party library, an
error message is displayed at runtime and a trivial block-partitioning is used
for the remainder of the application.

15

http://www.hdfgroup.org/HDF5/
http://cgns.sourceforge.net/hdf5.html
http://www.labri.fr/perso/pelegrin/scotch/
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://people.maths.ox.ac.uk/gilesm/parallel.html

lib routine A string which specify the partitioning routine to be used.
“KWAY” select the kway graph partitioner in PT-Scotch or ParMetis
“GEOM” - select geometric partitioning routine if ParMetis is the lib name

“GEOMKWAY” - select geometric partitioning followed by kway partition-
ing if ParMetis is the lib name

prime set Specify the primary op set to be partitioned

prime map Specify the primary op map to be used in the partitioning - to create the
adjacency lists for prime set - needed for “KWAY” and “GEOMKWAY”

prime set Specify the geometric coordinates as an op dat to be used in when using
“GEOM” or “GEOMKWAY”

Using the above routines, OP2 will take care of everything, reading in all of the sets, map-
ping and data, partitoning the sets appropriately, renumbering sets as needed, constructing im-
port/export halo lists, etc., and then performing the parallel computation with halo exchange
when needed.

Both MPI and single process executables can be generated, depending on the libraries which
are linked in.

16

3.5 Other I/O and Miscellaneous Routines

void op printf(const char * format, ...)
This routine simply prints a variable number of arguments; it is created is in place of the standard
printf function which would print the same on each MPI process.

void op fetch data (op dat dat, T* data)
This routine transfers a copy of the data currently held in an op dat from the OP2 back-end to a
user allocated memory block.

dat OP dataset ID – The op dat whose data is to be fetched from OP2 space to
user space

data pointer to a block of memory of type T – allocated by the user

void op fetch data idx(op dat dat, T* data, int low, int high)
Transfers a copy of the op dat’s data currently held by OP2 to a user allocated block of memory
pointed to by data pointer of type T. The low and high integers gives the range of elements (or
indices) to be fetched. Under MPI (with hdf5) all the processes will hold the same data block(i.e.
after an MPI Allgather)

dat OP dataset ID – The op dat whose data is to be fetched from OP2 space to
user space

data pointer to a block of memory of type T – allocated by the user

low index of the first element to be fetched

high index of the last element to be fetched

void op fetch data hdf5 file(op dat dat, char const *file name)
Write the data in the op dat to an HDF5 file

dat OP dataset ID – The op dat whose data is to be fetched from OP2 space to
user space

file name the file name to be written to

void op print dat to binfile(op dat dat, const char *file name)
Write the data in the op dat to a binary file

dat OP dataset ID – The op dat whose data is to be fetched from OP2 space to
user space

file name the file name to be written to

17

void op print dat to txtfile(op dat dat, const char *file name)
Write the data in the op dat to a ASCI text file

dat OP dataset ID – The op dat whose data is to be fetched from OP2 space to
user space

file name the file name to be written to

int op is root()
A supporting routine that allows to to check for the root process. Intended to be used mainly when
the application utilizes HDF5 file I/O and when the user would like to perform some conditional
code on the root process. Returns 1 if on MPI ROOT else 0

int op get size(op set set)
Get the global size of an op set

set OP set ID

void op dump to hdf5(char const * file name)
Dump the contents of all the op sets, op dats and op maps to an hdf5 file as held internally by OP2,
useful for debugging

file name the file name to be written to

void op timers(double *cpu, double *et)
gettimeofday() based timer to start/end timing blocks of code

cpu variable to hold the CPU time at the time of invocation

et variable to hold the elapsed time at the time of invocation

void op timing output()
Print OP2 performance performance details to STD out

void op timings to csv(char const * file path)
Write OP2 performance details to csv file. For an MPI code, details are broken down by rank. For an
OpenMP code generated with the environment variable OP TIME THREADS set, details are bro-
ken down by thread. For MPI+OpenMP codes with environment variable OP TIME THREADS
set, a breakdown of each thread for each MPI rank will be written to the CSV file.

file path the file to be written to

18

3.6 MPI message-passing without HDF5 files

Some users will prefer not to use HDF5 files, or at least not to use them in the way prescribed by
OP2. To support these users, an application code may do its own file I/O, and then provide the
required data to OP2 using the standard routines.

In an MPI application, multiple copies of the same program are executed as separate processes,
often on different nodes of a compute cluster. Hence, the OP2 declarations will be invoked on each
process. In this case, the behaviour of the OP2 declaration routines is as follows:

• op decl set: size is the number of elements of the set which will be provided by this MPI
process

• op decl map: imap provides the part of the mapping table which corresponds to its share
of the from set

• op decl dat: dat provides the data which corresponds to its share of set

For example, if an application has 4 processes, 4×106 nodes and 16×106 edges, then each process
might be responsible for providing 106 nodes and 4×106 edges. Process 0 (the one with MPI rank
0) would be responsible for providing the first 106 nodes, process 1 the next 106 nodes, and so on,
and the same for the edges.

The edge→ node mapping tables would still contain the same information as in a single process
implementation, but process 0 would provide the first 4×106 entries, process 1 the next 4×106

entries, and so on.
This is effectively using a simple contiguous block partitioning of the datasets, but it is very

important to note that this will not be used for the parallel computation. OP2 will re-partition the
datasets, re-number the mapping tables as needed (as well as constructing import/export lists for
halo data exchange) and will move all data/mappings/datasets to the correct MPI process.

19

4 Executing with GPUDirect

GPU direct support for MPI+CUDA, to enable (on the OP2 side) add -gpudirect when running
the executable. You may also have to use certain environmental flags when using different MPI
distributions. For an example of the required flags and environmental settings on the Cambridge
Wilkes2 GPU cluster see:
https://docs.hpc.cam.ac.uk/hpc/user-guide/performance-tips.html

20

https://docs.hpc.cam.ac.uk/hpc/user-guide/performance-tips.html

5 OP2 Preprocessor/ Code generator

There are three preprocessors for OP2, one developed at Imperial College using ROSE (cur-
rently not maintained), a second one developed at Oxford using MATLAB and finally a Python
parser/generator also developed at Oxford.

5.1 MATLAB preprocessor

The MATLAB preprocessor is run by the command

op2(’main’)

where main.cpp is the user’s main program. It produces as output

• a modified main program main op.cpp which is used for both the CUDA and OpenMP
executables;

• for the CUDA executable, a new CUDA file main kernels.cu which includes one or more
files of the form xxx kernel.cu containing the CUDA implementations of the user’s kernel
functions;

• for the OpenMP executable, a new C++ file main kernels.cpp which includes one or more
files of the form xxx kernel.cpp containing the OpenMP implementations of the user’s kernel
functions.

If the user’s application is split over several files it is run by a command such as

op2(’main’,’sub1’,’sub2’,’sub3’)

where sub1.cpp, sub2.cpp, sub3.cpp are the additional input files which will lead to the gen-
eration of output files sub1 op.cpp, sub2 op.cpp, sub3 op.cpp in addition to main op.cpp,

main kernels.cu, main kernels.cpp and the individual kernel files.

The MATLAB preprocessor was the first prototype source-to-source translator developed in the
OP2 project. This has been now superseded by the Python code generator.

5.2 Python code generator

The Python preprocessor is run on the command-line with the command

./op2.py main.cpp sub1.cpp sub2.cpp sub3.cpp

Assuming that the user’s application is split over several files. This will lead to the generation of out-
put files sub1 op.cpp, sub2 op.cpp, sub3 op.cpp in addition to main op.cpp, main kernels.cu,

main kernels.cpp and the individual kernel files.

• The modified main program main op.cpp is used for the efficient single threaded CPU (also
called as generated sequential or Gen Seq) OpenMP and CUDA executables;

21

• For the Gen Seq and OpenMP executable, main kernels.cpp is a new C++ file which in-
cludes one or more files of the form xxx kernel.cpp containing the OpenMP implementations
of the user’s kernel functions.

• For the CUDA executable, main kernels.cu is a new CUDA file which includes one or more
files of the form xxx kernel.cu containing the CUDA implementations of the user’s kernel
functions. If the OP AUTO SOA environmental variable is set, it will generate code that
transposes multi-dimensional datasets for faster execution on the GPU.

6 Error-checking

At compile-time, there is a check to ensure that CUDA 3.2 or later is used when compiling the
CUDA executable; this is because of compiler bugs in previous versions of CUDA. At run-time,
OP2 checks the user-supplied data in various ways:

• checks that a set has a strictly positive number of elements

• checks that a map has legitimate mapping indices, i.e. they map to elements within the range
of the target set

• checks that variables have the correct declared type

It would be great to get feedback from users on suggestions for additional error-checking.

22

7 32-bit and 64-bit CUDA

Section 3.1.6 of the CUDA 3.2 Programming Guide says:

The 64-bit version of nvcc compiles device code in 64-bit mode (i.e. pointers are
64-bit). Device code compiled in 64-bit mode is only supported with host code compiled
in 64-bit mode.

Similarly, the 32-bit version of nvcc compiles device code in 32-bit mode and device
code compiled in 32-bit mode is only supported with host code compiled in 32-bit mode.

The 32-bit version of nvcc can compile device code in 64-bit mode also using the
-m64 compiler option.

The 64-bit version of nvcc can compile device code in 32-bit mode also using the
-m32 compiler option.

On Windows and Linux systems, there are separate CUDA download files for 32-bit and 64-bit
operating systems, so the version of CUDA which is installed matches the operating system. i.e. the
64-bit version is installed on a 64-bit operating system.

Mac OS X can handle both 32-bit and 64-bit executables, and it appears that it is the 32-bit
version of nvcc which is installed. Therefore the Makefiles in the OP2 distribution may need the
-m64 flag added to NVCCFLAGS to produce 64-bit object code.

The Makefiles in the OP2 distribution assume 64-bit compilation and therefore they link to the
64-bit CUDA runtime libraries in /lib64 within the CUDA toolkit distribution. This will need to
be changed to /lib for 32-bit code.

23

	Introduction
	Overview
	OP2 C++ API
	Initialisation and termination routines
	op_init
	op_exit
	op_decl_set
	op_decl_map
	op_decl_const
	op_decl_dat
	op_decl_dat_tmp
	op_free_dat_tmp
	op_diagnostic_output

	Parallel loop syntax
	op_par_loop
	op_arg_gbl
	op_arg_dat
	op_arg_dat_opt

	Expert user capabilities
	SoA data layout
	Vector maps

	MPI message-passing using HDF5 files
	op_decl_set_hdf5
	op_decl_map_hdf5
	op_decl_dat_hdf5
	op_get_const_hdf5
	op_partition

	Other I/O and Miscellaneous Routines
	op_printf
	op_fetch_data
	op_fetch_data_idx
	op_fetch_data_hdf5_file
	op_print_dat_to_binfile
	op_print_dat_to_txtfile
	op_is_root
	op_get_size
	op_dump_to_hdf5
	op_timers
	op_timing_output
	op_timings_to_csv

	MPI message-passing without HDF5 files

	Executing with GPUDirect
	OP2 Preprocessor/ Code generator
	MATLAB preprocessor
	Python code generator

	Error-checking
	32-bit and 64-bit CUDA

